Ammoniak-Verbrennungssimulation mit AVL FIRE™ M

  • Blog

Michael Bogensperger, Senior Development Engineer Software

David Schellander, Senior Development Owner

Der stetig steigende Energiebedarf der globalen Bevölkerung bedarf dringend ein auf Nachhaltigkeit ausgerichtetes Umgestalten der Energiewirtschaft. In den letzten Jahren hat sich Ammoniak als potenzielle Alternative zu Wasserstoff herauskristallisiert, die als Wasserstoffträger und Kraftstoff für Verbrennungsmotoren verwendet werden kann. Das ECFM-3Z (Extended Coherent Flamelet Model 3 Zones), das als effizientes und adäquates Verbrennungsmodell bekannt ist, wurde in der Vergangenheit bereits mehrfach erweitert, um neben den Standardkraftstoffen, auch für alternative und umweltfreundliche Kraftstoffe ein leistungsfähiges Werkzeug zur Simulation der Verbrennung zu sein. Daher war es nur eine Frage der Zeit, dass auch die Simulation der Verbrennung von Ammoniak in ECFM-3Z ermöglicht wurde.

gl_ast_image_blog-header_template_ammonia_10_24

Aufgrund des ständig steigenden Energiebedarfs der Weltbevölkerung ist heute ein dringendes Umdenken in der Energiewirtschaft mit dem Schwerpunkt auf langfristiger Nachhaltigkeit erforderlich. Derzeit wird dieser Bedarf noch größtenteils durch fossile Brennstoffe gedeckt, wodurch die globale Erwärmung als große negative Nebenwirkung verursacht wird. Es wird ein teilweiser oder vollständiger Übergang zu einer kohlenstofffreien Wirtschaft wie der Wasserstoffwirtschaft angedacht. Eine globale Wasserstoffwirtschaft ist jedoch aufgrund von Schwierigkeiten bei der Lagerung und dem Transport schwer realisierbar. Daher hat sich in den letzten Jahren Ammoniak als mögliche Alternative herauskristallisiert, die als Wasserstoffträger und Kraftstoff für Verbrennungsmotoren verwendet werden kann.

Ammoniak bietet gegenüber reinem Wasserstoff mehrere Vorteile: Es hat eine höhere volumetrische Dichte, kann bei Raumtemperatur bei einem Druck von etwa 10 bar verflüssigt werden, und es gibt bereits eine weit verbreitete globale Vertriebsinfrastruktur, da Ammoniak bereits in der Landwirtschaft (Düngemittelproduktion) und in der industriellen Kühlung eingesetzt wird. Aufgrund der niedrigen Entflammbarkeitsgrenze ist es auch sicherer für die Lagerung und den Transport. Seine Verwendung ist jedoch mit Nachteilen wie Toxizität, geringerem Heizwert und langsamerer Brenngeschwindigkeit verbunden.

Der Hauptnachteil der Verwendung von Ammoniak sind die hohen NO-Emissionen, die durch katalytische Reduktion (SCR) in der Abgasnachbehandlung von Verbrennungsmotoren behandelt werden können. Effiziente Verbrennungsmotoren können mit NH3 in einem Zweistoffsystem betrieben werden, entweder mit H2 oder Diesel als Stützkraftstoff und Gasstrahlzündung oder mit Dieseleinspritzzündung als System zur Einleitung der Verbrennung. In beiden Fällen kann die Last durch Variation der eingespritzten Kraftstoffmenge gesteuert werden, wie beim Dieselmotor.

Das ECFM-3Z (Extended Coherent Flamelet Model 3 Zones) hat in der Vergangenheit bereits mehrere Erweiterungen erhalten. In diesem Zusammenhang wird die Erweiterung der Ammoniakverbrennung kurz beschrieben. Die Verbrennung von NH3 zu N2 und H2O ist exotherm:

4 NH3 + 3 O2 => 2 N2 + 6 H2O

Für die Ermittlung der NO-Emissionen wird der bestehende thermische NO-Mechanismus (Zeldovich) verwendet und die dafür erforderlichen atomaren Spezies werden mittels eines chemischen Gleichgewichtsmechanismus bestimmt.

Das neu angepasste ECFM-3Z kann für verschiedene Verbrennungssysteme verwendet werden: reine fremdgezündete NH3-systeme, Systeme mit NH3, die sowohl durch Selbstzündung von Dieselkraftstoff gezündet werden als auch eine Kombination von Systemen mit NH3/H2/CH4 (oder einem anderen Kohlenwasserstoff) als Hauptkraftstoff, der wiederum mit Diesel gezündet wird.

Ammoniak kann sowohl für Fremdzündungs- (SI) als auch für Selbstzündungsmotoren (CI) verwendet werden. Für Dual-Fuel-Anwendungen können NH3 und zusätzliche Kraftstoffe in Ottomotoren (Wasserstoff oder Benzin) und in Kompressionsmotoren (DME oder Diesel) verwendet werden.

In dieser Studie wurde ein Motor untersucht, der mit diesel-gezündetem Ammoniak betrieben wurde. Dieser Motor diente als guter Validierungsfall, wobei mehrere Betriebsbedingungen numerisch getestet wurden und ein spezieller Betriebspunkt (1350 U/min, Lambda =1,9) für die Kalibrierung des numerischen Modellaufbaus verwendet wurde. Es wurde ein Ammoniak-Energieanteil von 80 % berücksichtigt (20 % Diesel, 80 % Ammoniak). Um die Simulationsdauer zu optimieren, wurde der verwendete Motor als 40°-Segment mit einem strukturierten Netz modelliert (siehe Abbildung 1).

gl_ast_image_blog-ammonnia_1.png
Abbildung 1: Berechnungsnetz des LEC-Motors

Für dieses Betriebskonzept wurde eine Kraftstoffeinspritzung simuliert, wobei die Einspritzung von flüssigem Diesel mit dem Lagrange‘schen Tropfenmodell berechnet wurde. Ammoniak lag in gasförmiger Form (vorgemischt mit Luft) im Zylinder vor. Nach der Einspritzung löst die durch die Selbstzündung des Diesels freigesetzte Wärme die Verbrennung des Ammoniaks in der Brennkammer aus. Die vollständige Abfolge der Ereignisse, Einspritzung, Zündung und Verbrennung im Motor ist in der Animation in Abbildung 2 dargestellt.

gl_ast_image_blog-ammonnia-gif
gl_ast_image_blog-ammonnia-gif
Abbildung 2: Animation des Einspritz-, Zünd- und Verbrennungsvorgangs eines Ammoniak-Diesel-Motors

Abbildung 3 zeigt die Übereinstimmung zwischen den aus der 3D-CFD-Simulation (AVL FIRE™ M) gewonnenen mittleren Druckkurven und der Messung des vorliegenden Motors.

gl_ast_image_blog-ammonnia_2.png
Abbildung 3: Zylindermitteldruck im Vergleich von Simulation und Messung

Das ECFM-3Z-Modell in FIRE M bietet dem Anwender die Möglichkeit, die Ammoniakverbrennung schnell, effizient und robust zu simulieren. Die Simulationszeit ist vergleichbar mit der von konventionellen Benzin- und Dieselmotor-Simulationen mit ECFM-3Z-Modellen und deutlich kürzer als GGPR-Simulationen. Die Ergebnisse zeigen eine gute Übereinstimmung mit Referenzdaten.

Die Lösung in FIRE M unterstützt daher alle gängigen Zündkonzepte: Funkenzündung, Mikro-Pilot-Kompressionszündung und Selbstzündung durch externe Verbrennungsquellen. Damit ist das neue ECFM-3Z-Modell für alle derzeit erwogenen Ammoniak-Verbrennungskonzepte anwendbar.

Verpassen Sie keinen Simulations Blog

Melden Sie sich noch heute an und bleiben Sie informiert!

Gefällt Ihnen das? Vielleicht gefallen Ihnen auch diese...

gl_ast_image_blog-header-identity-series_10_24
Von Lochkarten zu Virtuellen Zwillingen: Die Entwicklung von Advanced Simulation Technologies und das Vermächtnis der Innovation

Starting over 40 years ago with punch cards as the first steps towards modern-day simulation, today Advanced Simulation Technologies (AST) is an invaluable business unit driving innovation. Predicated by decades of technical experience and know-how, since establishment it has earned a tradition and legacy at AVL.

AVL Simulation Blog - How Simulation Helps the Marinesector Become More Sustainable
Wie Simulation der Schifffahrtsindustrie zu mehr Nachhaltigkeit verhilft

Schiffe sind komplexe Systeme, die aufgrund ihrer Größe und Nutzung klassifiziert und durch ihre zahlreichen Unterkomponenten gekennzeichnet sind. Jede dieser Komponenten spielt eine entscheidende Rolle.

gl-ast_blog-battery-aging-header-07-2024
Mit dem Virtual Twin Einblicke in die Batteriealterung gewinnen

Die Batterie ist zweifellos die komplexeste Komponente moderner Elektroautos und maßgeblich für das Fahrerlebnis und die Reichweite verantwortlich. Doch im Laufe ihrer Lebensdauer unterliegt sie einem kontinuierlichen Leistungsverlust, bedingt durch Degradationsmechanismen, die ihre Speicherfähigkeit und damit die Reichweite und...

gl_ast_image_blog-header_template_04_23.jpg
Partikelbasierte Simulationen zur Optimierung des Designs von Geschirrspülern

Geschirrspüler gehören zu den gängigen Haushaltsgeräten, die in fast jeder modernen Küche zu finden sind. Im Laufe der Jahrzehnte wurden nicht nur das Design und die Funktionen von Geschirrspülern weiterentwickelt, sondern auch die Methoden und Technologien zur Analyse und Verbesserung ihrer Effizienz haben sich erheblich verändert.

gl-ast_blog-fast-charging-header-01-07-2024
Schnellade-Strategien Für E-Fahrzeuge Optimieren

Die Elektromobilität steht vor einer entscheidenden Herausforderung: Die Ladezeit der Batterie muss minimiert werden, um die Akzeptanz von elektrischen Fahrzeugen zu steigern. Dies ist von zentraler Bedeutung, da neben der Reichweite die Ladezeit einer der wichtigsten Faktoren für die Nutzerzufriedenheit ist.

Simulation Blog - Analyzing Critical ADAS/AD Scenarios With AVL Scenario Simulator™
Analyse von kritischen ADAS/AD-Szenarien mit dem AVL Scenario Simulator™

Um festzustellen, ob eine automatisierte Fahrfunktion sicher ist, wären Milliarden von Testkilometern erforderlich. Physikalische Tests und reale Prototypen können ein derartiges Testvolumen einfach nicht effizient bewältigen.

gl-ast_image-web-blog-soiling-header_00_06-24.jpg.
5 Gründe, warum PreonLab die ideale Software für die Simulation von Fahrzeugverschmutzung ist

Das Verständnis und die Beherrschung des Einflusses von Verschmutzungen auf ein Fahrzeug ist ein wichtiger Aspekt der Fahrsicherheit, der bei der Konstruktion von Fahrzeugen berücksichtigt werden muss.

gl_ast_image_blog-header_template-01_04_23
Entwicklung und Bewertung von Festoxidelektrolyseursystemen durch Simulation

Globale Initiativen und Maßnahmen zur Erreichung langfristiger Klimaziele führen zur Entwicklung und Industrialisierung neuer Elektrolyseursysteme.

gl_ast_image_blog-header_thermal-runaway
Prävention von Thermal Runaway: Simulation als Werkzeug für mehr Batteriezellen-Sicherheit

Ein gefürchtetes Phänomen in der Batterieentwicklung ist das thermische Durchgehen (Thermal Runaway) der Batteriezelle.

gl_ast_image_slideshow-release2024r1_keyvisual_16x9.jpg
AVL Simulation Software Release 2024 R1

Updates und Optimierungen für die Simulationslösung von AVL

Skip to main content Toolbar items Administration menu Home Current page Content Structure Translation Reports Configuration Help Close Breadcrumb Back to site  Edit gl_iodp_imag_optimizing_hybrid_powertrain_system_interactions_on_all_testbed_types_07.22.png  Edit Media Toolbar items Prod Go to  Global Nusa.Viher@avl.com Edit Image gl_ast_image_header-blog_vtms-kolaric_04_23.jpg Primary tabs Edit(active tab) Delete Usage Translate Name gl_ast_image_header-blog_vtms-kolaric_04_23.jpg Category  - None - Statu
Simulationen für ein effizienteres Wärmemanagement von Fahrzeugen

Die Reichweite ist einer der wichtigsten Verkaufsfaktoren für batteriebetriebene Elektrofahrzeuge, und für die Endkunden zählt jeder Kilometer. Es gibt mehrere Möglichkeiten, die Gesamteffizienz des Fahrzeugs zu erhöhen, aber einer der wichtigsten Beiträge ist ein effizientes Wärmemanagementsystem (VTMS).

gl_ast_image_blog-header_calibration-of-fuel-cells-and-electrolyzers
Automatische Kalibrierung von Brennstoffzellen und Elektrolyseuren in AVL FIRE™ M

Die Polarisationskurve stellt die Beziehung zwischen Zellspannung und Stromdichte dar. Eine genaue Übereinstimmung zwischen den Vorhersagen des Modells und der experimentellen Polarisationskurve ist für zuverlässige Simulationen unerlässlich. 

Verpassen Sie keinen Simulations Blog

Melden Sie sich noch heute an und bleiben Sie informiert!

CAPTCHA

Indem Sie auf "Absenden" klicken, erklären Sie sich mit der Verwendung der von Ihnen angegebenen Daten zur Bearbeitung Ihrer Anfrage und mit dem Erhalt von Mitteilungen im Zusammenhang mit Ihrer Anfrage/Registrierung einverstanden.
Bitte klicken Sie hier, um die AVL-Datenschutzrichtlinie einzusehen.