

Battery Core Functions [BCF/SoX]

BMS and LFP CF

Content

1

2

Hybrid SoC Model

AVL developed hybrid model bringing SoC model accuracy of +/-2% for LFP batteries

SoH Model Development

Novel approaches to SoH model development including machine learning, electrochemical analysis, and cloud data analytics.

3 Cell Characterisation Testing Optimisation

Two example methods of approach

Why Accurate BCF Estimation is Essential in Modern EVs

Impact on Vehicle Performance

Driving Range: Accurate SoC helps in predicting how far the EV can travel before needing a recharge.

Battery Efficiency: Proper SoH assessment ensures optimal battery usage and longevity.

Enhancing User Confidence:

Reliability: Accurate SoC and SoH estimations reduce range anxiety among users.

Safety: Predicts potential battery failures and maintenance needs, enhancing overall vehicle safety.

Economic and Environmental Benefits:

Cost Efficiency: Maximises the lifecycle of the battery, reducing replacement costs.

Sustainability: Efficient battery usage helps in reducing environmental impact by minimising waste.

Accurate SOx estimation is a cornerstone of modern EV technology, driving safety, efficiency, sustainability, and user trust. It is vital for meeting the demands of next-gen mobility.

/ 3

Battery Management and Core Functions

Design & Development

SAFETY & DIAGNOSIS

- Isolation detection
- HV interlock
- Safety monitoring

AUXILIARY FUNCTIONS

- Start-up / Shutdown
- Signal acquisition / actuator control
- Main contactor control
- Pre-charge function
- Thermal management

BATTERY CORE FUNCTIONS

- State of Charge (SOC)
- State of Health (SOH)
- State of Function/Power limit prediction (SOF)
- Battery Balancing
- Battery Charge Time Estimation
- Cell Anomaly Detection
- Thermal Propagation /Venting detection

V&V & Testing Efficiency

Battery lifetime prediction

DIAGNOSIS

- Diagnosis functions
- Error-management

INTERFACE &

COMMUNICATION

- Vehicle interface (CAN)
- Diagnosis interface
- Logistic-information
- Actuator control (external)
- Re-programming

AI & Data Analysis

Public

PM, Process & Quality

Battery SoC Accuracy – Technical Challenges with LFP

- LFP chemistry has growing market share, particularly with Chinese cells because of reduced cost and volatility, as well as material accessibility
- However, LFP has a flat SoC vs. OCV curve in the "middle region", as well as non-linear "tails" at low and high SoC

Battery SoC Estimation – AVL Solution

Hybrid approach combines conventional & electrochemical models for high accuracy

Equivalent Circuit Model (Conventional)

Empirical Approach

Conventional model tracks SoC well, lacks capturing dynamics

AVL Advanced Model

Hybrid Approach

Establishes analogy between conventional & electrochemical model

Addresses BOTH LFP Challenges

Electrochemical Model

Physics-based Approach

Captures cell dynamics well, but computationally expensive

/ 6

AVL Solution

Battery SoC Estimation for LFP Chemistry

AVL advanced model

<u>+2%</u>

accuracy for advanced SoC estimation model for LFP chemistry achieved

*Between 10 & 45°C

Reference – Evaluation Results

Conventional model* vs AVL advanced model for LFP battery

*3RC equivalent circuit model

Condition

Battery: LFP Initial SoC error: > 35% at RT

In both models, the initial 35% SoC error gradually converges towards the reference SoC during charging and discharging.

AVL advanced model corrects and aligns accurately to reference SoC target

/ 8

Key Drivers for SOH Accuracy Improvement

Enhanced Battery Safety	 Accurate SOH helps predict failures that could lead to dangerous events eg: Cell Anomaly/TP Detection. Early Fault Detection: Enables proactive maintenance and replacement, mitigating safety risks.
Extended Battery Life	•Optimised Usage Patterns: Precise SOH allows for tailored charging and discharging cycles to minimise degradation. •Lifecycle Management: Ensures batteries are utilised to their maximum potential before recycling or replacement.
Improved EV Performance	 •Reliable Range Predictions: Accurate SOH supports precise State of Charge (SoC) calculations, reducing range anxiety. •Consistent Power Delivery: Maintains consistent energy output for optimal vehicle performance.
Cost Savings	•Lower Operational Costs: Reduces the need for premature battery replacements, minimizing ownership costs. •Better Warranty Management: Improves claims validation by providing reliable data on battery usage and health.
Regulatory Compliance	 •Regulations as a driver: European Union (EU) Battery Regulation (2023/1542), UNECE - GTR, CARB - Advanced Clean Cars (ACC) II Program •Battery Reuse & Recycling: Accurate SOH facilitates secondary use of EV batteries in stationary storage applications.

LFP SoH Development for +/- 3% SoH Accuracy*

*Between 10 & 45°C

Cloud Utilisation Brings New BMS Requirements & Function Enabling the Benefits of SoX Enhancement via Cloud and OTA Updates

Machine Learning Based SoH Model in On-Board Application Enabling the Benefits of SoH Enhancement via ML and/or Cloud Data Analytics

High Level Modeling Approach

Exemplary Modelling Results

Model Input FeaturesStatistical metrics

Charging patterns

Load

Dvnamics

SoC behavior

Usage heatmap

Reduced Error up to 30%

HiL System for BMS Core Function Validation

Two approaches possible for BMS HiL validation:

- Hybrid method: cell tester and chamber combined with the HiL system physical cell(s) in place of a cell model
- Model method utilising an electrochemical cell model derived from characterisation testing

No Pack Hardware Needed

Less or No cells required

Faster verification enabling test **time**

case testing (e.g., unbalanced aging)

*Available Q4 2024

AVL 💑

Battery Model Calibration

Standard Calibration Process is ~6 Months (BoL) & ~18 Months (EoL)

Reducing Cell Testing Efforts for Model Calibration Existing Cell / Electrochemical Model Recalibration for 2nd Use-Case

BoL Model Calibration in 14 Weeks, and EoL Calibration in 8 Months

Battery Testing Time Reduction End of Life (EoL) Prediction in Testing using AI/ML SoH

BMS and Core Function References

- Advanced Development
 - Wireless BMS CMC with RF based on 2-layer PCB for Tier2
 - Evaluation of new BMS communication technologies for 3 Tier2 suppliers
 - 1500V BMS development for ESS supplier
 - Advanced Battery Core Function development with internal R&D
- BMS (SoP) projects active in 2024 @ AVL
 - Battery Core Development for two German OEMs Until 2028
 - Advanced BCF Development for Korean OEM SoP 2027
 - Advanced BCF Development for Japanese OEM SoP 2028
 - PHEV BMS SOP development (2 variants) from concept to **SoP 2024** and series support with Tier1
 - BMS SOP development for 12V Li-Ion BMS SoP 2026
 - BMS SW SOP development for 48V motorcycle OEM SoP 2024

Thank you

www.avl.com