

# Heavy-Duty Drivelines

The AVL HD E-Axle Technology Showcase

Felix BAYER

AVL List GmbH

## Today's Presenters



#### **Felix Bayer**

#### **Technical Expert Powertrain Systems**

felix.bayer@avl.com +43 316 787 2685







## About AVL





Reimagining Motion

"We are driven by a **passion** to examine the science, mechanics and philosophy of movement. To help create a world that is climate-neutral and one that makes **safe**, **comfortable**, **green mobility** a reality for everyone."

#### Helmut O. List

Chairman and CEO AVL List GmbH





/ 6

## Truck & Bus Focus Areas





## New Tech-Center @Steyr Total Area of 15.000 m<sup>2</sup> focused on Flexibility and Multi-Use





# Introduction and Target Setting

## Challenges



Legislative targets will demand ZEV for all CVs. e-Axles are demanded for compliance with regulatory limits and policy initiatives



Packaging space for batteries and  $H_2$  tanks needs a holistic e-Axle development approach to ensure a compact e-axle structure



Integrated e-Axles come with high investment costs – Modularity and vehicle segments with high sales numbers are key



Specific OEM needs will require customized engineering solutions

- Fleet structure
- Time to market

## Introduction

#### AVL Is a One-Stop Solution Provider for e-Axles in All Vehicle Classes



### Introduction Target Setting

#### **Main Vehicle Performance Parameters**

- Derived from real drive cycle (4x2 Truck)
- Required continuous power: 400 kW



20 % @ peak power



3 % @ 80 kph



max. speed 100 kph



Conventional Axle Packaging





# System Development

### Multistep Workflow Example Powertrain Sizing





### Utilizing Pso for Finding the Right e-Axle Topology Input Data







Different e-axles with different ratio families. Ratio variation within each family concept. Different driving cycles (combination from EU + US) with different payloads. Different e-motor concepts with three different diameters each. Scaling of e-motor power.







### Utilizing Pso for Finding the Right e-Axle Topology Simulation matrix



#### **Explanation of variations**

- Each of the axles has different ratio variations
  - Standalone
  - Family I family III
- Each axle and ratio variation is combined with the different e-motors
  - E-motor with same power, but different outer diameter
- Furthermore, each e-motor (with the different outer diameters) is also scaled in power

#### **Resulting number of overall calculated variants**

|                 | Drive<br>cycles      | E-axle<br>Topologies                           | E-motor<br>types<br>(average)          | E-motor<br>power<br>scaling | E-motor<br>diameters                   | Gear ratios<br>(average)                                         | Gear ratio<br>families                            | Overall<br>variants |
|-----------------|----------------------|------------------------------------------------|----------------------------------------|-----------------------------|----------------------------------------|------------------------------------------------------------------|---------------------------------------------------|---------------------|
|                 | 14                   | 5                                              | 2                                      | 3                           | 3                                      | ~10                                                              | 4                                                 |                     |
| Overall         | x                    | х                                              | х                                      | х                           | х                                      | х                                                                | х                                                 | ~50000              |
| Per e-axle      |                      |                                                | х                                      | х                           | х                                      | х                                                                | х                                                 | ~720                |
| Per application |                      | х                                              | х                                      | х                           | х                                      | х                                                                | х                                                 | ~3600               |
| Explanation     | HD<br>MD<br>EU<br>US | Axie 1<br>Axie 2<br>Axie 3<br>Axie 4<br>Axie 5 | Em1<br>Em2<br>Em3<br>Em4<br>Em5<br>Em6 | +0 %<br>+10 %<br>+20 %      | 123 mm (a)<br>456 mm (b)<br>789 mm (c) | Ratio gear 1-x (v1)<br>Ratio gear 1-x ()<br>Ratio gear 1-x (v10) | Standalone<br>Family I<br>Family II<br>Family III |                     |

/ 16

### Utilizing Pso for Finding the Right e-Axle Topology KPI Post-Processing via Matlab App



### AVL HD e-Axle Development Modularity Example (MD to HD)



### AVL HD e-Axle Development Technology Demonstrator (A-Sample)



Flexible, Scalable and Modular Architecture

#### E-motors (PSM)

- 2 x 270 kW peak power
- 2 x 200 kW continuous power
- 9.000 rpm max. rotational speed
- Direct oil cooling for highest torque density



#### AVL HD e-Axle development FEA Simulations

Strength and lifetime of housings, chassis parts and other e-axle components (e.g. differential case, planetary carrier)

- Various load cases to ensure structural strength and lifetime of e-axle and chassis components
  - Static loads
  - Dynamic loads
  - Torque loads
  - Combined loads
- Check of **bolt connections**
- Check of **flange tightness**
- Input for NVH and CFD simulations



# AVL HD e-Axle Development

## Optimization of gear micro geometry (contact pattern)







#### Reduction of structure born noise



Public / 21

### AVL HD e-Axle Development Simulations for Cooling and Lubrication System

#### **Cooling system**

- Simulation of temperature distribution
- Highly efficient direct oil cooling system for high continuous e-motor power
- No overheating of oil and components for high lifetime & short maintenance intervals



## Lubrication of transmission components

- Simulation of oil distribution
- Validation on test rig
- Defined lubrication oil flows to transmission components for high reliability and durability





#### Integration in vehicle

- 3D CFD underhood simulation of heat transfer in installed condition
- Reliable cooling system in real working conditions



#### AVL HD e-Axle Development Thermal Virtual Validation





# Hardware Validation

# AVL HD e-Axle Development

- Oil distribution test
- Pump performance test
- Pressure relive valve adjustment / function test
- Delta p measurements





/ 25

### AVL HD e-Axle Development Basic Function Test – No Load

- Resolver adjustment
- Inverter measurements
- E-Motor measurements
- Parameter check
- SW Check
- Shifting function check



### AVL HD e-Axle Development Basic Function Test – Under Load

- Shifting behavior measurement
- Resolver adjustment
- Inverter measurements
- Temperature behavior (E-Motor, Inverter, System)
- Run in
- SW adjustments / checks





### AVL HD e-Axle Development Contact Pattern Test

- At nominal torque (all gears, pull and coast)
- At peak torque (all gears, pull and coast)





### AVL HD e-Axle Development Vehicle Integration Tests

- Batterie tests
- E-Axle tests
- E-Motor/Inverter tests
- Thermal / cooling performance tests
- EMC pre-tests
- SW tests
- Communication tests
- Fault injection testing







# **Production Adaptations**

#### AVL HD e-Axle Development Adaptations for Production



AVL 💑

## AVL HD e-Axle Development Adaptations for Production





## Conclusion and Summary

- ✓ AVL has the experience for development of e-axles fulfilling all relevant series requirements
- ✓ Simulation based approach leads an optimized arrangement for the e-axle
- ✓ The chosen topology with 2 oil cooled e-motors and multi-speed transmission enables flexible operating strategies to balance efficiency and durability
- ✓ The flexible and modular concept can be adapted for various applications with different boundary conditions
- ✓ Virtual and physical testing proved the capability of the AVL HD e-axle for the application in commercial vehicles
- ✓ The gained know-how and the individual technology building blocks can be applied to all future projects









# Thank you



www.avl.com