

Enabling a Greener Environment With Reduced Vehicle Lifecycle Costs and CO₂ Emissions

M. Rothbart

Today's Presenter

Martin Rothbart

Senior Product Manager Energy & Sustainability

24 years of experience in automotive industry

5 years responsible for business development and lifecycle sustainability

About Us

Summary

Challenges

Legislation, Industry and Society Pushing for Decarbonization

Note: Not exhaustive and not all regulations might be relevant for all companies

CO₂ tax/penalty

Other GHG emissions than CO₂

Life-cycle analyses

Public

Reporting

Alternative fuels

Battery regulation

Cross-border adjustment measures

CO₂ fleet emissions

Circular economy

Emission trading scheme

Clean truck and bus regulation

Corporate Sustainability Due Diligence Directive

 CO_2 tax/penalty

Other GHG emissions than CO₂

Life-cycle analyses

/ 8 Public

Alternative fuels

Battery regulation

Cross-border adjustment measures

CO₂ fleet emissions

Circular economy

Clean truck and bus regulation

Corporate Sustainability Due **Diligence** Directive

Legislation, Industry and Society Pushing for Decarbonization

Note: Not exhaustive and not all regulations might be relevant for all companies

Today's topic

Global Primary Energy Supply and Demand

Public / 9

M. Rothbart | Sustainable Solutions | 25 Juni 2024 | AVL 🗞

History of Global Human-Made CO₂ Emissions

Growth of population and prosperity have been and still are the main drivers for GHG emissions. Technology progress in all sectors needed for the entire lifecycle including production.

Methods

External Factors and Challenges A Comprehensive CO₂ Strategy Should Address 6 Key Elements

Achieving CO₂e Targets Corporate Level vs. Product Level

Corporate Level

Scope 1, 2, 3 emissions Strategic actions to become carbon neutral

Product Level

Environmental footprint for components, drivetrains and vehicles

 $\rm CO_2e$... Carbon dioxide equivalent; metric measure, converting amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential

On Product Level: Lifecycle View is Essential

Design products for CO_2e – Design products for multi lifecycle

Sustainability in the Drivetrain

Early Development Phase Has Biggest Impact on Lifecycle GHG Emissions

AVL's Method Design to CO_2e in Product Development Anticipating All Life Cycle Phases

It is important to consider CO₂e as a parameter in the early phase of development

QG... Quality Gate; ESG... Environmental, Social, Governance; CBAM... Carbon Border Adjustment Mechanism; EHS... Environment, Health, Safety; PLM... Product Lifecycle Management, RfQ... Request for Quotation

Public / 16

AVL Method Simultaneous Assessment of Production Cost and CO_2e

Bottom-up calculation for optimized cost and CO_2e balancing in production. Usage of same methods create the basis for finding the sweet spot for each product.

Solutions

C-Segment Vehicles

Hybrid Electric Vehicle (HEV) Propulsion 110 kW / Fossil Gasoline

Battery Electric Vehicle (BEV) Propulsion 150 kW / Battery 60

Life Cycle CO₂e of Propulsion System Options

Similar range of Life Cycle CO_2 e emissions for all powertrains utilizing all options. High dependency on energy mix, especially for BEV. Hydrogen and ICE fuel need to shift to renewable energy.

AVL Offerings What Could a Project Approach Look Like?

Depending on accuracy requirements for MILESTONE 03, such an approach can take 6 to 12 months

E-Mobility Redrawing the Lines of Electrification

System Efficiency Concept Efficiency Increase of up to 25 %*

Ī⇔ī

Starting point

• Standard C-segment vehicle with a 60 kWh battery

Conclusion

 A 25 % increase in efficiency is possible by using a highly efficient e-axle with optimized traction inverter, electric motor, and transmission

AVL Service Offering

Powertrain system design optimization

Benefit

Efficiency increase of up to 25 % through improved component application

*Based on current C-segment vehicle with 60 kWh battery

EDU System Comparison Speed Increase Saves 10 % CO₂e

Starting point

- PMSM with best power density & efficiency
- IM, EESM, SynRM use no rare earth \rightarrow focus on EESM
- Other trade-offs not considered (e. g. supply chain)

Conclusion

Speed increase saves 10 % CO₂e

AVL Service Offering

CO₂ assessment and Design to CO₂

Benefit

Reduction of CO₂ footprints by design measures.

Source: A. Angermaier et.al., Electric drive units with high power density & sustainability, Vienna Motor Symposium 2024

Add. components for EESM rotor excitation incl. in power inverter Gearbox including EDU housing & rotor shaft incl. bearings All scaled to same peak power of 160 kW

Traction Battery Cover Over 20 % CO_2e Saving Potential for Steel and SMC

Variant	Cost [€]		CF [kg CO_{2e}]		Weight [kg]	
Steel	70		66		18	•
Aluminum	117		85		7	•
SMC*	147		67		10	

Starting point

- Variation of battery cover material
- Variation of the production location

Conclusion

- With the view on lifecycle, beyond costs additional parameter need to be balanced.
- Over 20 % CO₂e saving potential for steel and SMC

AVL Service Offering

CO₂ assessment and Design to CO₂

Benefit

Reduction of CO₂ footprints by design measures

rounded to the nearest whole number

/ 28

*SMC ... Sheet Moulding Compound

Traction Battery Cell Simultaneous Cost and CO_2e Assessment for Battery Production

Starting point

- Standard NMC622 cells
- Adaption of manufacturing process

Conclusion

- Increase of CO₂e performance by change of production location and cathode material change
- CO₂e reduction might come at higher costs

AVL Service Offering

CO₂ assessment and Design to CO₂ (in manufacturing)

Benefit

Reduction of CO₂ footprints by process improvements

/ 29

CO₂e Assessment of Fuel Cell Propulsion System Based on Toyota Mirai 1 & 2, Hyundai Nexo, AVL fuel cell demo truck

Fuel Cell System Reference: 100 kW, Hydrogen Storage Capacity Reference: 5 kg

Starting point

- State of the art fuel cell stack system
- Consider scale-up measures and material variation

Conclusion

- Fuel cell stack and hydrogen storage production make up for over 70 % of CO₂e footprint
- Production efficiency & electricity mix improvement potential of 30 %

AVL Service Offering

CO₂ assessment and Design to CO₂

Benefit

 Reduction of CO₂ footprint by design measures & process improvements

/ 30

M. Rothbart | Sustainable Solutions | 25 Juni 2024 | AVL 💸

Summary

CO₂e reduction in energy supply is essential in all stages of the life-cycle. The design and development has the highest impact on the CO_2e of the subsequent phases.

Design-to- CO_2e will become an integral part of future RFQs.

Thank you

www.avl.com